5,389 research outputs found

    Instabilities in the nonsymmetric theory of gravitation

    Get PDF
    We consider the linearized nonsymmetric theory of gravitation (NGT) within the background of an expanding universe and near a Schwarzschild metric. We show that the theory always develops instabilities unless the linearized nonsymmetric lagrangian reduces to a particular simple form. This theory contains a gauge invariant kinetic term, a mass term for the antisymmetric metric-field and a coupling with the Ricci curvature scalar. This form cannot be obtained within NGT. Next we discuss NGT beyond linearized level and conjecture that the instabilities are not a relic of the linearization, but are a general feature of the full theory. Finally we show that one cannot add ad-hoc constraints to remove the instabilities as is possible with the instabilities found in NGT by Clayton.Comment: 29 page

    VLT/SINFONI time-resolved spectroscopy of the central, luminous, H-rich WN stars of R136

    Full text link
    Using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI), we have obtained repeated AO-assisted, NIR spectroscopy of the six central luminous, Wolf-Rayet (WR) stars in the core of the very young (~1 Myr), massive and dense cluster R136, in the Large Magellanic Cloud (LMC). We also de-archived available images that were obtained with the Hubble Space Telescope's Space Telescope Imaging Spectrograph (HST/STIS), and extracted high-quality, differential photometry of our target stars to check for any variability related to binary motion. Previous studies, relying on spatially unresolved, integrated, optical spectroscopy, had reported that one of these stars was likely to be a 4.377-day binary. Our study set out to identify the culprit and any other short-period system among our targets. However, none displays significant photometric variability, and only one star, BAT99-112 (R136c), located on the outer fringe of R136, displays a marginal variability in its radial velocities; we tentatively report an 8.2-day period. The binary status of BAT99-112 is supported by the fact that it is one of the brightest X-ray sources among all known WR stars in the LMC, consistent with it being a colliding-wind system. Follow-up observations have been proposed to confirm the orbital period of this potentially very massive system.Comment: 9 pages, 6 figures; accepted for publication in MNRA

    Extraction of black hole coalescence waveforms from noisy data

    Full text link
    We describe an independent analysis of LIGO data for black hole coalescence events. Gravitational wave strain waveforms are extracted directly from the data using a filtering method that exploits the observed or expected time-dependent frequency content. Statistical analysis of residual noise, after filtering out spectral peaks (and considering finite bandwidth), shows no evidence of non-Gaussian behaviour. There is also no evidence of anomalous causal correlation between noise signals at the Hanford and Livingston sites. The extracted waveforms are consistent with black hole coalescence template waveforms provided by LIGO. Simulated events, with known signals injected into real noise, are used to determine uncertainties due to residual noise and demonstrate that our results are unbiased. Conceptual and numerical differences between our RMS signal-to-noise ratios (SNRs) and the published matched-filter detection SNRs are discussed.Comment: 15 pages, 11 figures. Version accepted for publicatio

    Non-Singular Gravity Without Black Holes

    Get PDF
    A non-singular, static spherically symmetric solution to the nonsymmetric gravitational and electromagnetic theory field equations is derived, which depends on the four parameters m, l^2, Q and s, where m is the mass, Q is the electric charge, l^2 is the NGT charge of a body and s is a dimensionless constant. The electromagnetic field invariants are also singularity-free, so that it is possible to construct regular particle-like solutions in the theory. All the curvature invariants are finite, there are no null surfaces in the spacetime and there are no black holes. A new stable, superdense object (SDO) replaces black holes.Comment: 26 pages, UTPT-94-0

    A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Full text link
    Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from \sim 5 minutes to months. Results. We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P \sim 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A Research Note

    Abelian Anomalies in Nonlocal Regularization

    Full text link
    Nonlocal regularization of QED is shown to possess an axial anomaly of the same form as other regularization schemes. The Noether current is explicitly constructed and the symmetries are shown to be violated, whereas the identities constructed when one properly considers the contribution from the path integral measure are respected. We also discuss the barrier to quantizing the fully gauged chiral invariant theory, and consequences.Comment: 21 pages, UTPT-93-0
    corecore